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Abstract
It was recently noted how the classical sine-Gordon theory can support
discontinuities, or ‘defects’, and yet maintain integrability by preserving
sufficiently many conservation laws. Since soliton number is not preserved by
a defect, a possible application to the construction of logical gates is suggested.
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1. Introduction

In two recent articles [1, 2], based principally on the affine Toda series of integrable models,
of which the sinh-Gordon (or sine-Gordon) model is the simplest example, it was pointed out
that integrable field theories in 1 + 1 dimensions allow internal boundary conditions which
preserve integrability.

Typically, at an internal boundary the classical field will have a discontinuity, hence
the name ‘defect’, yet energy (and momentum) are conserved after they have been suitably
modified to take into account the energy (and momentum) stored in the defect. Actually,
this is already surprising given that translation invariance is destroyed by placing a defect
in a particular location. Moreover, integrability is maintained in the sense that it is possible
to construct a Lax pair incorporating a defect which will guarantee (and indeed generate
explicitly) an infinity of other independent conserved quantities. The properties of a single
defect can be repeated since any number of defects may be placed along the x-axis, each
bringing an additional parameter to the model. In [1] it was pointed out how a single soliton
solution is affected when the soliton encounters a defect. In this letter it is intended to expand
upon this observation and point out a possible use. Naturally, it must be said at the outset
that this work is entirely theoretical and speculative since, although it appears to be the case
that sine-Gordon or other solitons can appear within special systems, for example Josephson
junctions, polymers, or liquid crystals (see, for example, [3–5] and references therein), it is
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not yet known how the specific defect introduced and described mathematically in [1] might
be realized in a genuine physical system.

Solitons have remarkable properties (there are many reviews, but see for example [6, 7])
and many uses have been proposed in different contexts. In the arena of information theory or
computation several ideas suggest themselves. For example, a soliton is stable and therefore
might be used reliably to transport a bit of information. The sine-Gordon equation, being
relativistic, requires that solitons have a maximum speed above which they cannot travel,
and a train of separated solitons all moving close to that speed might be used reliably and
efficiently to convey data. More remarkably, sine-Gordon solitons have a scattering property,
in the sense that a fast soliton behind a slow soliton will inevitably overtake it but neither
will lose their integrity. All that happens is a relative delay (a shift forwards for the faster
soliton and a shift backwards for the slower one). One could imagine making use of this
property also in a scenario where data are transported relatively slowly and a fast soliton might
be used to overtake the data and signal to the receiver information concerning the data (that
it should be ignored, for example). Besides solitons, there are also anti-solitons and these
scatter maintaining their integrity not only with other anti-solitons but also with solitons. In
particular, a soliton will not annihilate an anti-soliton. A soliton and an anti-soliton can make
a permanently bound state (a ‘breather’) with centre of mass energy 0 < E < 2Ms , where Ms

is the mass of the soliton/anti-soliton.
One idea which has appeared in the literature, concerning the use of solitons to perform

logical operations, seems radical because it is envisaged that the whole computation takes place
using the dynamics of certain solitons (not necessarily those associated with the sine-Gordon
model), dispensing entirely with standard gates [13]. The purpose of this letter is to point out
that conventional computing might be carried out, albeit theoretically, by using solitons and
anti-solitons to carry data, capitalizing on the properties of defects to construct standard logic
gates.

2. Defects in the sine-Gordon model

First, the defect idea introduced in [1] will be reviewed briefly, following the notation and
conventions established previously, and it is enough in the first instance to consider a single
defect located at x = 0.

For convenience, the field in the region x > 0 will be denoted φ2 and the field in the
region x < 0 will be denoted φ1. Then, the field equations in the two regions together with
the defect conditions at x = 0 are

x < 0 : ∂2φ1 = −sin φ1, (2.1)

x > 0 : ∂2φ2 = −sin φ2, (2.2)

x = 0 : ∂xφ1 − ∂tφ2 = −σ sin

(
φ1 + φ2

2

)
− 1

σ
sin

(
φ1 − φ2

2

)

∂xφ2 − ∂tφ1 = σ sin

(
φ1 + φ2

2

)
− 1

σ
sin

(
φ1 − φ2

2

)
.

(2.3)

As pointed out in [1], these equations follow from a simple Lagrangian description of the
sine-Gordon model with a defect though there is no need to review that aspect here. The form
of the defect condition (2.3) is dictated by a desire to maintain integrability and it has been
remarked already [1] how similar it is to a Bäcklund transformation [8]. Usually, a Bäcklund
transformation relates two different solutions to a nonlinear field equation (or solutions to two
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different field equations) defined in a common domain. However, in the present context the
two spatial derivatives are frozen at the location of the defect. The parameter σ is free and
associated with the defect. If σ is set to zero, the two fields on either side of x = 0 are forced
to have the same value at x = 0 and the defect disappears. Generally, for other choices of σ

there will be a discontinuity since φ1(0, t) �= φ2(0, t). If there are several defects then each
will introduce its own free parameter.

An important feature of a Bäcklund transformation is its ability to generate (or remove)
solitons and in fact this is one method of constructing multi-soliton solutions by repeated
application—see, for example, [6, 7]. The question arises concerning the extent to which this
property survives when the x-derivatives are frozen, as they are in the above defect condition.
If it does, then a defect has the potential to act as a filter, or ‘gate’, at least for suitable choices
of the parameter σ .

Consider first a single soliton approaching a defect at x = 0 from the right (x > 0).
A convenient expression for the soliton solution in the two regions has the form (see, for
example, [9, 10])

eiφa/2 = 1 + Ea

1 − Ea

, Ea = eαax+βat+γa , α2
a − β2

a = 1, a = 1, 2, (2.4)

with α and β real, and Im γ = iπ/2. In order to be able to satisfy the conditions (2.3) the
time dependence must match in the two domains (implying β1 = β2) and the constants γ1, γ2

are related by

γ1 = γ2 − ln

(
eθ + σ

eθ − σ

)
, (2.5)

where it is convenient to define α1 = α2 = cosh θ and β1 = β2 = sinh θ (i.e., the soliton
velocity is −tanh θ ). In other words, one effect of the defect is to delay or advance the soliton
as it passes through.

Suppose σ is chosen to be positive with σ > 1, then there are several interesting features
to observe.

(a) The incoming soliton solution satisfies eθ > σ . In this case, the soliton is delayed, though
by less the faster it goes; solitons at their limiting speed (θ → ∞) are not delayed at all.

(b) The incoming soliton satisfies eθ = σ . In this case, the soliton is infinitely delayed—or
swallowed—by the defect. This feature was already pointed out in [1].

(c) The incoming soliton satisfies eθ < σ . In this case, the delay acquires an imaginary part
iπ , indicating that the character of the solution φ1 has changed. In fact, if φ2 is a soliton
then φ1 is an anti-soliton, or vice versa.

(d) A soliton travelling in the opposite direction (θ replaced by −θ ) will not be swallowed
by the same defect as at (b). In this case, a fast soliton will be delayed and converted to
an anti-soliton; with σ > 1 it will never be absorbed.

If σ < 1 the story is similar except the roles of the soliton and anti-soliton interchange.
The properties (b) and (c) are surprising, especially if one is used to the idea of topological

charge—or soliton number—being conserved. On the other hand, once there is a defect, there
is no longer any reason to expect soliton number to be preserved. Indeed, integrating the
density for topological charge gives

Q =
∫ 0

−∞
dx ∂xφ1 +

∫ ∞

0
dx ∂xφ2 = φ2(∞, t) − φ1(−∞, t) + φ1(0, t) − φ2(0, t), (2.6)

and it becomes clear the difference φ1 − φ2 measures the strength of the defect at x = 0.
Effectively, in cases (b) or (c), respectively, the defect is storing one or two units of
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topological charge. These two phenomena also fit well with the traditional uses of Bäcklund
transformations.

The different effects of the defect on solitons moving in opposite directions is reflected
in an intriguing feature of (2.3) with respect to its behaviour under time reversal. In each of
the bulk regions the sine-Gordon equations are invariant separately under the transformations,
t → −t and φa → −φa, a = 1, 2. In contrast, the defect condition is invariant only under
the combinations of any pair of these, for example t → −t and φ1 → −φ1 or φ2 → −φ2,
together with σ → 1/σ . For a given choice of σ this implies the model loses its time-reversal
invariance, meaning there is no time-reversed process to (b) in which, for example, a defect
might emit a soliton.

If several solitons approach a defect then they interact with it independently of one another,
each being delayed. This is not difficult to check using an explicit two soliton solution of the
form [9]

eiφ/2 = ln(τ0/τ1), τp = 1 + (−)p(E(1) + E(2)) + A12E
(1)E(2), p = 0, 1

A12 = −tanh2

(
θ1 − θ2

2

)

E(a) = eα(a)x+β(a)t+γ (a)

, a = 1, 2

(2.7)

in each of the two regions, and imposing the boundary condition (2.3). The defect condition
requires

γ
(1)
1 = γ

(1)
2 − ln

(
eθ1 + σ

eθ1 − σ

)
(2.8)

γ
(2)
1 = γ

(2)
2 − ln

(
eθ2 + σ

eθ2 − σ

)
. (2.9)

Note, by adding iπ to any of the constants γ (a), either one or other, or both, soliton components
can be converted to anti-solitons.

An interesting and important point to note is that the defect can absorb at most one soliton
(or anti-soliton), given a suitable σ , but not both because a genuine two soliton solution requires
θ1 �= θ2. On the other hand, neither, or one, or both may be converted to a soliton of the
opposite character according to the relative magnitudes of eθ1 , eθ2 and σ . These observations
appear to suggest that a defect might be used to model logic gates.

3. The defect as a logical gate

In this section it will be supposed that σ > 1 and solitons approach a defect from the right
(x > 0).

Adopting the convention that a soliton represents true or ‘1’, and an anti-soliton false
or ‘0’, the simplest gate to model is NOT since it is enough that the soliton (or anti-soliton)
approaching the defect is moving slowly with eθ < σ .

Using the defect to remove a soliton or anti-soliton is not by itself enough to reproduce
the full variety of logic gates. For example, if the first soliton to reach the gate is removed,
the second must be travelling slower and will be inverted. This is illustrated in table 1
where the first soliton to arrive at the defect is labelled a1 and the second a2. On the other
hand, if the second arrival is to be removed the first will pass the defect delayed yet retain its
character. Neither of these is especially useful but together they exhaust the possibilities with
a passive defect.
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Table 1. Sample gate using a passive defect.

a2 a1 a2 ∗ a1

1 1 0
1 0 0
0 1 1
0 0 1

Table 2. XOR gate using an active defect.

a2 a1 a2 XOR a1

1 1 0
1 0 1
0 1 1
0 0 0

Table 3. NAND gate using an active defect.

a3 a2 a1 a2 NAND a1 a2 a1

1 1 1 0 1 1
1 1 0 1 1 0
1 0 1 1 0 1
1 0 0 1 0 0

On the other hand, if it is supposed there is feedback, which allows the passage of a
soliton (but not an anti-soliton) to initiate a signal instructing the defect ‘controller’ to raise
the defect parameter, then the possibilities become more interesting. For example, it would
be possible to arrange the first arrival to be removed and then raise the defect parameter if
it is a soliton, but merely to be removed if it is an anti-soliton leaving the defect parameter
unchanged. Under such circumstances, the second arrival will be inverted if the first arrival is
a soliton but not if it is an anti-soliton. This allows, in the same notation as that used in table 1,
an XOR gate to be represented (table 2).

However, even with this device it is clear the output will always have an even number of
‘1’s and therefore both NOR and NAND (from which all other standard two-bits-in-one-bit-out
gates can be constructed) are unobtainable. Besides, a careful tuning of the defect parameter
is required to remove a soliton and it might be better to allow both solitons to pass, adjusting
the defect parameter each time there is a passing soliton, but not for a passing anti-soliton.
With two bits this will just reproduce the XOR gate already described.

On the other hand, consider a triple of approaching solitons/anti-solitons. Each will
be affected by the defect independently of the others (checked as before in the case of two
using Hirota’s explicit solution), and arrange for each passing soliton (but not anti-soliton) to
increase the defect parameter by the same amount δ with

eθ1 > σ, eθ2 > σ + δ, σ + 2δ > eθ3 > σ + δ.

The three arriving solitons/anti-solitons have rapidities θ1 > θ2 > θ3. With this arrangement,
the first pair of solitons/anti-solitons pass the defect, delayed but without inversion, but the
third is inverted provided the first two were both solitons, and not otherwise. If the third is
always a soliton this provides a version of the NAND gate for the first two (table 3). In fact,
using all possible triples in and out with the rules described above gives a representation of
the Toffoli three-bit gate [14].
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4. Discussion

As stated in the introduction, it is not yet clear if there is a set of physical circumstances
permitting the type of integrable defect whose properties have been discussed. The search
for such a system continues. It would also be interesting to investigate further the quantum
aspects of field theories with defects (developing ideas originally pioneered by Delfino et al
[15]). In the past, the quantum sine-Gordon model has been investigated (see, for example
[16]), mostly from an algebraic point of view, but it is not yet clear all the properties outlined
above (and those given in [1, 2]) have been properly taken into account. In particular, no
mention has been made previously concerning a defect’s ability to change topological charge
by ±1, although it is clear the transmission matrix discovered by Konik and LeClair does allow
transitions between solitons and anti-solitons changing topological charge by ±2. Perhaps the
transmission matrix constructed by them will need to be generalized, or perhaps the capacity
of a defect to remove a soliton/anti-soliton does not survive quantization; it is, after all, a
delicate matter since the incoming soliton rapidity needs to be precisely matched to the defect
parameter, yet quantum effects are rarely so sharply tuned.

Some time ago, Baseilhac and Delius discovered dynamical boundary conditions for the
sine-Gordon model restricted to a half-line [17]. Seeking the analogues of these in association
with a defect may prove profitable.

One might also wonder about the possibility of finding representations of two-qubit gates
or a three-qubit gate, such as the generalization of the Toffoli gate due to Deutsch [18], using
solitons within an integrable quantum field theory.
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